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Abstract

Unmanned air vehicles of the future will be more lethal and more autonomous than the
remotely-piloted reconniassance platforms in use today. Among the many open issues in
their development is that of path planning: Without a pilot, computer algorithms must be
developed that generate a 
ight path in real time. This is a challenging problem for several
reasons. The algorithm must compute a stealthy path, steering the aircraft's radar signature
around known enemy radar locations. These paths must be both minimal-length and feasible
for the aircraft to follow. The algorithm must allow for coordination among multiple UAVs.
And it must run in \real-time," since enemy threats can change during a mission, forcing a
path re-plan. Finally, it must be memory and computationally e�cient, since it will run on
an airborne processor.

In this report, we investigate three di�erent approaches that can be used to generate
desirable UAV paths. These include 1) Graphs, which represent the path as a sequence of
edges of a graph, 2) Optimal Control, which computes an optimal path for a given cost
function, and 3) Virtual Potential Fields, which compute a path as the solution to a related,
simpler problem. Our treatment of graphs is summary; the ideas are introduced, and simple
graph structures are used as initial conditions for the latter two approaches. For the optimal
control approach, we de�ne a conservative set of UAV kinematics that the generated path
will satisfy, and then construct a cost function that captures the important characteristics
of the problem. We solve the optimal control problem for some simple cases, and set-
up the more general solution as the solution to a two-point boundary value problem. We
then turn to the virtual potential �eld approach, describing it in detail and providing some
simulation examples. We close this report with a comparison between the approaches, and
some recommendations on the future of UAV path planning research.
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List of Symbols

Term Description

E0 Inertial reference frame, attached to the Earth.
(x0; y0; z0) Inertial reference frame cartesian coordinate axes.

Eb UAV \body" reference frame.
attached to the UAV center of mass.

(xb; yb; zb) Body frame cartesian coordinate axes
h Height of UAV, assumed to be constant

(x; y; 0) Cartesian coordinates of UAV, expressed in E0 frame
� Roll angle of UAV
 Heading angle of UAV

(�xk; �yk; h) Cartesian coordinates of kth radar site, expressed in E0 frame
(x̂k; ŷk; ẑk) Cartesian coordinates of kth radar site, expressed in Eb frame
(�̂k; �̂k) Spherical coordinates (elevation, aximuth) of kth radar site,

expressed in Eb frame
�(�̂k; �̂k) Radar energy intensity, expressed in spherical coordinates

relative to frame Eb.
s(x; y;  ; u; �xk; �yk) Radar energy intensity, expressed in cartesian coordinates

in the E0 frame.
r(x; y; �xk; �yk) Distance between UAV and kth radar site,

raised to the fourth power.
J(u) Cost function.
N Number of radar sites.
Q Radar returned energy weight.

R1; R2 Turning (control) weights.
M Number of masses in the potential �elds approach.
b Damping term in the potential �elds approach.
� Spring constant in the potential �elds approach.
mk Mass used in the potential �elds approach.



1 Introduction

For several decades, the US Air Force has used unmanned air vehicles (UAVs) for little more
than remotely-piloted reconniassance platforms and target practice drones. But their role is
about change. UAVs of the future will be able to accomplish a mission, such as delivering
ordinance to a target, autonomously | with little or no human intervention. They will be
able to sense a change in their environment, such as a threatening missile, and alter their
mission plan. Multiple UAVs will be able to coordinate the timing of an attack. They will
be capable of independently seeking and destroying targets of opportunity. And of course,
they will continue to serve as reconniassance platforms.

Among the many open issues in their development is that of path planning. A path
planning algorithm computes a trajectory from the UAV's present location to a desired future
location, e.g. a target. But the path planner must do more than simply generate a set of way
points along the straight line connecting the present location with the target. A good path
planning algorithm must possess several important attributes, making its design a multiple-
objective optimization problem. First, and most importantly, it must compute a stealthy

path, steering the aircraft and its radar signature around known enemy radar locations. No
aircraft scatters or re
ects radar radiation uniformly in all directions. Rather, radiation is
radiated more strongly in some directions, and less strongly in others. The path planning
algorithm should take advantage of \notches" in the radar signature, pointing them toward
known enemy radar sites. Conversely, directions which radiate strongly should be turned
away from these sites. Second, generated trajectories should be of minimal length, subject
to the stealthy constraint. Of course, UAV range is limited, and time spent over enemy
territory should be minimized, so path length should always be a factor in any algorithm.
Third, the trajectory should be feasible for the aircraft to follow. Any trajectory that causes
the aircraft to 
y at velocities outside its 
ight envelope, or to turn at an impossible rate,
is obviously not acceptable. Fourth, the path-planning algorithm must be compatible with
the cooperative nature envisioned for the UAV. A typical mission might involve multiple
UAVs attacking single, well-defended target. The path-planner would be a component |
a subroutine | of the hybrid control system that ensures all UAVs arrive simultaneously.
And �nally, path-planning algorithms are expected to be coded in software that runs on an
airborne processor. Thus, they must be computationally e�cient and \real time," enabling
the UAV to re-plan its trajectory should an unforeseen threat arise. This last characteristic
should not be dismissed as an implementation issue. Existing path planning methods that
are extremely computationally complex should be ruled-out as potential solutions early in
the design cycle.

Fortunately, the problem of trajectory planning has been studied for decades in a variety
of di�erent contexts. The aerospace path planning problems of the 1960's were solved largely
through the application of the calculus of variations, itself invented hundreds of years earlier,
e.g. [1, 2, 3]. The development of industrial robotic manipulators in the 1970s and 1980s
encouraged researchers to study new path planning methods, largely motivated by collision
avoidance. More recently, the focus in robotics has shifted to path planning for autonomous
mobile robots. Although most of this work concerns wheeled vehicles, e.g. [4], path planning
algorithms have been developed for UAVs as well as underwater robots.

In this report, we explore three di�erent solutions to the path planning problem for

1



UAVs. First, we brie
y outline the so-called graph-based methods. These approaches \grid"
the airspace, representing the set of all possible paths to a target as the edges of a graph.
The graph can be searched for an optimal path using well-known methods such as Dijkstra's
Algorithm to compute an optimal trajectory. Next, we look at an optimal control approach.
We propose a simple kinematics model of an aircraft, and derive a meaningful cost function
that captures the essence of the path planning problem. This is a weighted sum of path
length, returned radar energy, and expended control energy. The numerical solution of this
problem is also investigated. Finally, we solve the the path-planning problem using a method
that makes use of classical mechanics and virtual potential �elds. This represents the path
as a chain of masses connected by springs and dampers. The masses are acted upon not
only by the restoring spring force, but also a virtual repulsive force pushing from each radar
site. The physics of the situation force the chain to bend around the radar sites, minimizing
a weighted sum of average distance from the radar sites and path-length. The idea is to
simulate the mechanical system on-line, and use the �nal con�guration of the masses as
way-points.

This report is organized as follows. In Section 2, we look at the key criteria that a suc-
cessful algorithm must possess: Stealth, Dynamic Constraints, Cooperation, and E�ciency.
In Section 3, we brie
y examine graphical methods of solution. Our presentation of this
approach is by no means complete. Rather, our aim is to show the strengths and weaknesses
of a graphical approach when applied this particular problem. In Section 4, we turn to an
optimal control approach. We propose a simple dynamic model of a UAV, and then derive a
meaningful cost that captures the critical design issues mentioned above. We then partially
solve the problem using well-founded methods in optimal control theory and the calculus of
variations, resulting in a set of two-point boundary value problems that require numerical
solution. In Section 5, we explore the virtual potential �eld method, providing some simula-
tion results for some benchmark problems. Finally, in Section 6, we draw some conclusions,
comparing the di�erent approaches, showing how they can be combined into a hybrid path
planner. Of course, we also make recommendations for future research.
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2 Path-Planning Algorithm Design Issues

A successful path-planning algorithm must produce trajectories that are stealthy, have min-
imal path length, satisfy the UAV dynamic constraints, and are compatible with the coop-
erative missions envisioned for UAVs. And it must be e�cient enough to run on an airborne
processor. These design criteria are detailed in this section.

2.1 Stealth

It is well-known that today's military aircraft are designed to minimize the probability of
detection by enemy radar. They do this by absorbing incoming radar radiation and/or
re
ecting it in a direction di�erent than the ambient direction, so that little is re
ected back
to the original radar site. Although great e�orts are made, the fact remains that all aircraft
will re
ect some small amount of radar radiation back to a radar site. The only way to avoid
detection is to ensure that the UAV trajectory is designed such that worst-case re
ected
radiation is below a detection threshold.

If an aircraft re
ected radar energy uniformly in all directions, the path-planning would
be relatively trivial. (This will be made clear later in this report.) Unfortunately this is
not the case. Rather, because aircraft are designed to redirect incoming radar radiation in
certain safe directions, while minimizing re
ected radiation in others, its radar \signature"
is by design not uniform in all directions. For example, it is well-known that the F-117
\stealth �ghter" is shaped such that incoming radiation is not re
ected back in its incident
direction, but rather is re
ected in di�erent directions, causing little to be returned to the
enemy radar site. This means that, in general, the radar signature for a given aircraft will
have \notches" and \spikes" in known directions. It is important to generate trajectories
that steer the notches toward enemy radar sites, while steering the spikes away from them.
This signi�cantly complicates the path planning problem.

In this study, we will assume that the UAV does not re
ect radar energy, but rather
radiates energy on its own. This simpli�es the problem because we don't have to consider
changing angles of incidence and re
ection along a 
ight path. We will assume that the
amount of radiated energy depends on direction in a pattern that is easiest to express using
a spherical coordinate system. To do so, we �rst attach the so-called \body frame" to the
UAV according to convention, such that the xb-direction points in the direction of 
ight, the
yb-direction is along the right wing, and the zb-direction points \down." This is shown in
Figure 1. Let � denote the azimuth angle, measured with respect to the xb-direction, and
let � denote the \elevation" angle, measured with respect to the zb axis, as shown in Figure
1. Note that � is not measured with respect to the xb � yb plane, in order to simplify the
formulas that follow. With this convention, we can de�ne a function �(�; �) which represents
the amount of radiated energy as a function of direction. For example, the function

�(�; �) =

(
4 cos2(3�) � � �

6
rad = 30�

4 cos2(3�) sin2(2�) � > �

6
rad = 30�

(1)

which is plotted in Figure 2, has a highly-directionally dependent \signature" consisting of
�ve lobes. In these directions, the UAV would be highly visible, while in other directions,
the radiated energy tends to zero. This particular function is chosen because of its particular
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Figure 1: UAV body frame, showing the xb, yb and zb axes, and the de�nition of the spherical
coordinates � and � for an example vector x.

computational simplicity, not necessarily because it represents the radiation pattern of any
particular aircraft. Nevertheless, it does capture the nature of the problem: To steer the
UAV such that the radiation lobes stay away from known enemy radar locations. We will
use this function throughout this report.

2.2 Minimal Path Length

In every path-planning algorithm, be it a graph, an optimal control problem, or a solution
obtained using virtual forces, a cost is minimized. The cost is a weighted sum of terms. One
of these terms will represent energy received by each radar site. Another will represent path
length. This is important to include for reasons that are more or less obvious. Certainly
minimizing path length is important in order to conserve fuel. It is also important to reduce
the amount of time spent over enemy territory. What may not be obvious is that path
length must be included in the cost because otherwise the optimization problem will not be
well posed. That is, if a cost contains only a penalty on radar detection, the \optimal" path
would be to stay at home, giving a cost of zero. If constraints are used to force solutions that
include a target, then the \optimal" path might 
y the UAV far away from any enemy radar
sites, giving an excessively long (or, in the limit, in�nitely long) path. So path length must
be included in the cost to make it a well-posed optimization problem. This is not unlike the
usual requirement that the weight on the control be positive (R > 0) in a classical (LQR)
optimal control problem.

2.3 Dynamic Constraints

The path generated should be \
yable" by the UAV. A path that requires the UAV to reduce
its airspeed below a stall condition, or to turn at an excessive rate, will not be acceptable.
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Figure 2: An example UAV radar signature used in this study, de�ned in equation (1).

Thus, a simple model incorporating the dynamic constraints will somehow have to be imposed
on the optimization problem. In an optimal control setting, this is relatively straightforward:
The dynamic constraints can be included through use of Lagrange multipliers (costates). In
a graphical approach, we simply assign the vertices of the graph at points in space through
which it is possible for the aircraft to 
y, and then connect these vertices with edges, along
which the aircraft can 
y. Thus, in this approach, any path through the graph is \
yable."

That said, the path-planning problem is not an \inner-loop" control problem. The model
of aircraft dynamics to be included must be the simplest possible, capturing only the essential
constraints of 
ight. If an overly detailed model is incorporated, the problem will increase
in computational complexity, becoming impossible to solve in real-time. This point can be
understood by analogy. Suppose we are planning an automobile trip from Dayton OH to
Hartford CT. The path planning problem in this context is to determine the sequence of
highways to take. We want to minimize a weighted sum of a measure of our travel time and
our probability of receiving a tra�c ticket for speeding. (Assume we know where all of the
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police are located.) To solve this problem, we require a map, and we need to know the average
speed of the car. Then dynamic programming can be used to solve this problem e�ciently.
Importantly, this solution does not require knowledge of the detailed of the dynamics of the
car, only the average velocity. That is because we are not concerned with the details of the
trajectory, such as lane changes along the way. The UAV path planning problem is at the
same level. We are not interested in control surface settings, only in generating a 
ight path,
or set of way points, along which it is possible for the UAV (and its lower-level controller)
to track. Thus, we shall propose a very simple kinematic model of UAV \dynamics," which
includes limits on roll and turn rates.

2.4 Cooperation

Using UAVs in a cooperative sense to accomplish a mission is one vision of their use. For
example, a group of three UAVs might be assigned to attack a target simultaneously from
di�erent directions. In such a scenario, each UAV would plan a trajectory that has the same
�nal state and time. Should something such as a missile threaten one of the UAVs, each of
these paths might require modi�cation. So, the team's �nal time, or ETA, is not necessarily
de�ned a priori. It must be de�ned as part of the coordination e�ort. ETA determination will
use the path-planner as a subroutine. A good path planning algorithm must be consistent
with this vision. Speci�cally, it should provide a low-observable path (one minimizing a
well-de�ned cost function) for a given, �xed �nal time, and it should also provide a path and
a �nal time when the latter is not a priori speci�ed. We should think of the path planner
as a subroutine, to be executed repeatedly by a higher-level mission controller, in order to
determine UAV and team ETAs in addition to the path itself. All three methods examined
in this report are well-suited for both the free and �xed �nal time problems.

2.5 Real-Time Performance

The path planning algorithm must be both memory and computationally e�cient, since it
will be realized in software that runs on an airborne processor. It must also be capable of
re-planning a path should a new threat arise. Thus, it would be an advantage if a planning
algorithm could make use of \old" information in addition to the new threat information
when doing re-planning. For example, adding a vertex to a graph does not necessarily mean
the entire graph needs to be re-searched from scratch. The data structure used to represent
the graph should be amenable to adding and deleting vertices. Finally, the algorithm must
scale well. This means that its computational complexity scales as a polynomial and not
an exponential in the number of radar sites or UAVs, for example. What is appropriate for
ground-based, pre-mission path planning, which would use essentially unlimited processing
power, may not be appropriate for an airborne deployment.
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Figure 3: Vertices of a graph.

3 Graph Approaches

A graph is a set that contains vertices and edges. Graphs can be used to solve the path
planning problem, just as they do for many similar robotic path-planning problems, by
assigning vertices to discrete points of state space, connecting them appropriately with edges,
assigning weights (costs) to each edge, and then searching the graph for an optimal trajectory
using one of several well-known algorithms.

The basic idea can be illustrated by example. Suppose we have a rectangular area of
space through which we wish to plan a trajectory. We �rst quantize the con�guration space
of the UAV. Assume that it can be located only at regularly spaced points on a horizontal
Cartesian grid, as shown in Figure 3. (For simplicity, assume that it 
ies at a constant height
h, although the z-direction could also be quantized.) To be more speci�c, let us assume there
are M � N discrete locations in the x and y directions, respectively. Now, at each of the
M � N locations in the plane, suppose that the UAV can assume a number P of discrete
orientations (headings), spread uniformly about the compass directions. In total then, the
UAV can assume M �N �P discrete con�gurations, each of which is a vertex on the graph.

The next step is to connect the vertices using edges. Here, we account for the dynamics
of the UAV, in a somewhat course manner. We will assume that when the aircraft is at
a particular vertex, then it can proceed along the same direction, turn left, or turn right.
Thus, we will connect each vertex with six other vertices (3 \input" and 3 \output"). This
is diagrammed in in Figure 4. For this example, we have a total of 24�M �N edges.
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Figure 4: Edge assignment of a graph.

The next step is to assign a cost or weight to each edge. This is a nonnegative number
that re
ects the cost for the UAV to move along that edge, and is a weighted sum of the
edge path length and probability of radar detection along the edge. (Costs are discussed at
length in Section 4 in the context of optimal control. The costs used there are also applicable
to the graph approach.) Once costs are assigned for each edge, a method such as Dijkstra's
algorithm [5] can be used to search the graph for the minimum cost path between any two
vertices. If V is the number of vertices and E is the number of edges, the computational
complexity of Dijkstra's algorithm is O(V log(V ) + E). Since in our example, E = 3V ,
meaning the graph is sparse, this estimate is dominated by the V logV term.

A graph approach o�ers a number of advantages over other methods such as optimal
control. First, it gives a global solution, although it should be remembered that it is global
only on the set of discrete positions (vertices) and edges. Second, the amount of calculation
required to compute the optimal is bounded. This bound may be large, but the fact that it
exists at all is extremely useful for any real-time implementation. (Recall that \real time"
doesn't necessarily mean \fast," but rather \predictable.") The major disadvantage is the
fact that the solution may be overly quantized. If the radar signature has a large number of
nodes, then the graph will have to have a large number of orientations (more than just the 8
used above), and this will signi�cantly increase the number of vertices and edges. Moreover,
a full three-dimensional problem will increase the number of vertices and edges exponentially.
For a realistic problem, this increase might make the whole approach infeasible.

Of course, there are heuristic algorithms that can be used to search graphs not in an
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exhaustive way but by pruning away parts of the graph that will probably not yield an
optimal solution. An excellent example of using graphs to generate trajectories using the
so-called A� algorithm can be found in [4]. But these methods are beyond our scope.

3.1 Delaunay Triangulation

Another way to curtail the exponential increase in computational complexity of the graph
method is to use a sequence of graphs. We start with a relatively course graph, one with
a small number of vertices, and search it for an optimal solution. We then build a new
graph in a neighborhood of this optimal solution, and search it for a new optimal solution.
The second graph would have a higher density of vertices and edges. This procedure can be
repeated. In this way, we have a more detailed level of quantization for the �nal trajectory,
while reducing the amount of computation required by the graph search procedure.

Taking this approach to its extreme, we might begin by constructing the simplest possible
graph that captures the very essence of the problem. Such a graph can be constructed using
Delaunay triangulation and its geometric dual, Voronoi polygons. This procedure, which is
used in many di�erent �elds, including computational 
uid dynamics, computer graphics,
and statistics, begins with complete knowledge as to the number and location of each radar
site, as illustrated in Figure 5 (top). For every triplet of radar sites, there exists a unique
circle that passes through all three. Consider only those triplets whose circle does not enclose
any other radar sites, as shown in Figure 5 (bottom). The set of all such triplets is called
the Delaunay triangulation, and the centers of the circles are called Voronoi points. We may
now construct a graph by de�ning the vertices as the Voronoi points. Edges are drawn to
connect two Voronoi points if and only if their associated Delaunay triangles share an edge.
By drawing all such edges, we construct the Voronoi diagram or graph. The edges of the
Voronoi diagram have the property that they are equidistant from pairs of radar sites.

If we consider the Voronoi diagram to be a graph, with vertices being the Voronoi points
and edges being the connecting segments, then we can assign weights to each edge just as
we would for any graph. Searching this graph is done exactly the same way any graph is
searched. This will produce an optimal path from the set of Voronoi segments which is the
simplest path through the radar sites, in the sense that it \tells" the UAV which pairs of
radar sites to 
y between. While this approach might provide an overly simpli�ed, coarse

ight path, it is useful as an initial condition for other methods that can capture more of the
detail inherent in the path planning problem, such as a more re�ned graph or the optimal
control approach outlined in the next section.
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Figure 5: Top: Delaunay triangulation begins with knowledge of the ten radar sites (small
circles), the UAV (triangle) and target (concentric circles). Bottom: Triplets of radar sites
are selected such that the unique circle that passes through them contains no other radar
sites. The center of each circle is a Voronoi point.
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Figure 6: Top: Delaunay triangulation is continued by connecting the Voronoi points. Two

points are connected if their associated Delaunay triangles share an edge. Bottom: The

Voronoi diagram is completed by extending rays from the edge Voronoi points midway

through the appropriate Delaunay triangle edge. The target and UAV are attached, weights

are assigned, and the graph is searched.
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4 Optimal Control

In this section we frame the path planning problem as a classical optimal control problem
of the form

min
u
J(u) = h(tf ;x(tf )) +

Z tf

t0
l(x; u) dt (2)

subject to the constraints

_x = f(x; u); x(t0) = x0; x(tf ) = xf : (3)

Here, x(t) represents the state of the aircraft at time t 2 [t0; tf ], u(t) represents a control
input (to be de�ned below), x0 and xf are the speci�ed initial and �nal states, respectively,
t0 and tf are the initial and �nal times, respectively, h(tf ;xf) � 0 is a penalty on the �nal
state, and the integrand l(x; u) � 0 penalizes the trajectory and control.

Our goal is to de�ne meaningful expressions for h(tf ;x(tf)), l(x; u) and f(x; u) in (2)
and (3), and then to solve the resulting optimal control problem for u(t) for both the �xed
�nal time problem (when tf is speci�ed) and for the free �nal time problem (when tf is
unknown). We begin by de�ning f to be a simple model of the aircraft kinematics.

4.1 Dynamic Constraints

Before deriving a simple model of UAV dynamics, we make the following assumptions.

1. The UAV 
ies at a �xed altitude h. This is a reasonable assumption, made primarily to
simplify the numerical aspects of the problem. It would be a straightforward exercise
to relax this assumption, allowing the UAV to change altitude according to a second
control input.

2. The UAV 
ies at a �xed, constant speed, which without loss of generality is normalized
to 1. For purposes of path planning, this signi�cantly simpli�es the problem. This is
because the path length must be part of the cost (2). If a path is parameterized by t
and is expressed in Cartesian coordinates (x(t); y(t)) then its length is de�ned as

path length =
Z tf

t0

q
_x2(t) + _y2(t) dt: (4)

So the integrand of (4), with _x and _y replaced with the right-hand-side of (3), would
be part of l(x; u) in (2). However, if the dynamics have a constant velocity normalized
to one, then (4) is equal to tf � t0 and l(x; u) is signi�cantly simpli�ed.

Note that this assumption is made only for the purposes of planning the trajectory.
Once the path is planned, the UAV may change its speed when 
ying along the tra-
jectory, in order to satisfy other constraints such as meeting a team ETA.

3. All of the radar sites are at sea-level, simplifying some of the expressions that follow.
Incorporating surface features would not complicate the problem at all, as long as the
radar altitudes were known.
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Figure 7: Frames of reference.

Before proceeding, we introduce two important frames of reference. Referring to Figure 7,
let E0 denote an earth-�xed inertial frame with axes labeled x0, y0 and z0, respectively. This
frame is oriented such that its origin is a �xed altitude h, and the z0-axis points down toward
earth's surface. Next, we denote the frame of reference that is attached to the UAV (the
so-called body frame) as Eb, and label its axes xb, yb and zb. Its origin is located at the
UAV center of mass, and it is oriented such that xb is aligned with the UAV velocity vector,
yb points out the right-hand side of the aircraft, and zb points down toward the ground, as
illustrated in Figures 1 and 7.

The UAV is allowed four degrees of freedom: Translation in the x0 and y0 directions,
denoted by x and y in the E0 frame, rotation about the zb axis (yaw), denoted  , and
rotation about the xb-axes (roll), denoted �. Heading  is de�ned as the angle measured
between the x0 and xb axes, while roll � is measured between the z0 and zb axes, respectively.
By changing both  and �, the UAV can direct its radar signature lobes around ground-
based radar sites. However, to simplify the development, the UAV is not allowed a pitching
degree of freedom. Thus, the following kinematic equations will be used to model the UAV
dynamic constraint (3):

_x = cos (5)

_y = sin (6)

_ =
1

9
arctan u: (7)

We constrain the roll angle � to be an algebraic function of the input

� =
2

3
arctan u: (8)

Note that by solving (8) for arctan u and substituting into (7), one can think of the roll
angle � as a control input, which is constrained to satisfy j�j < �=3. The incorporation of
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saturating function arctan(�) (and the constants 2/3 and 1/9) into the dynamic equations
serves to limit both the roll angle � to j�j < �

3
rad = 60�, and the turning rate _ to

j _ j < �
18

rad=s = 10�=s. These are reasonable constraints for a UAV. Or, put another way,
the path generated by these arti�cial dynamics equations should be su�ciently conservative
such that any UAV can can track any solution.

As an alternative to the arctan functions, we could constrain the input using the hard
bound ju(t)j < �

3
. Although such a bound is easy to incorporate into the optimal control

problem statement, and is easily handled using Pontrygin's minimum principle, it does make
the subsequent numerical solution more di�cult. We prefer use the softer arctan nonlinear-
ities, and to design a cost function to have a large penalty on large u.

4.2 The Cost

The cost functional (2) should be designed to penalize a weighted sum of path length,
measured radar energy at each radar site (integrated along the path), and turning rate. Thus,
for both the free and �xed �nal time problems, we propose the following cost functional:

J(u) =
Z tf

t0
1|{z}

path
length

+ Q
NX
k=1

s(x; y;  ; u; �xk; �yk)

r(x; y; �xk; �yk)| {z }
kth radar cost

+
R1

2
u2 +

R2

2
(u� arctan u)2| {z }

turning cost

dt ; (9)

where R1 > 0, Q � 0 and R2 � 0 are constants, and the functions s and r are de�ned below.
Each of these four terms requires explanation.

The �rst term is of course the path length, as explained above. Note that in the �xed
�nal time problem, when tf is known a priori, this term has no e�ect on the problem. That
is, the optimal control that minimizes J will not be a�ected by the �rst term. Only when
tf is free, and the path length is not known a priori, does this term play a role. This should
become clear when the necessary conditions are written out below.

The last two terms penalize the magnitude of the control input u. Note that the use of
u in the dynamics is somewhat arti�cial: It is not an actual aircraft control input. However,
for any real value of u, the magnitude of the roll angle j�j is bounded by 2�=3, while the
magnitude of the turning rate is bounded by �=18. Thus, if u remains bounded, solutions
to the dynamic equations will exist for all time. (We are ignoring the important issue
of reachability here: Does there exist a control to satisfy the boundary conditions? This
should be investigated as future research. It seems reasonable, however, that the answer is
a�rmative for su�ciently large tf � t0. This would agree with practical experience.) These
terms are added to place a penalty on large roll angles, which are probably not desirable,
and more importantly to make the optimal control problem well posed.

Figure 8 shows a plot of the sum of these terms for several di�erent values of R2 for �xed
R1 = 1. As can be seen in these plots, the cost is relatively \
at" until u becomes large, when
the cost increases as O(u6). This is because (u� arctan u)2 = (u3=3� u5=5 + u7=7� � � �)2,
so the quadratic term dominates for small juj, while for large juj, the higher order terms in
the Taylor series for arctan(�) dominate.

Finally, the second term in (9) penalizes measured energy at each of the N radar sites,
integrated along the path. Here, r is the distance between the UAV and the kth radar site
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Figure 8: Control penalty (last two terms of (9)) for R1 = 1 and three di�erent values of R2.

(1 � k � N) raised to the fourth power,

r(x; y; �xk; �yk) =
�
(x� �x)2 + (y � �y)2 + h2

�2
; (10)

(�xk; �yk) are the Cartesian coordinates of the kth radar site expressed in the E0 frame, and
(x; y) is the location of the UAV, also expressed in the E0 frame. (Recall that the energy
in a radar echo signal is proportional to 1=r4.) The numerator term s is simply the radar
signature function � discussed earlier, and captures the fact that the UAV does not radiate
uniformly in all directions. However, s in (9) must be expressed in the more cumbersome
Cartesian coordinates E0 instead of the spherical Eb coordinates,

s(x; y;  ; u; �xk; �yk) = �(�̂k; �̂k) (11)

where the conversion from spherical coordinates to Cartesian coordinates is given by

x̂k = (�xk � x) cos + (�yk � y) sin (12)

ŷk = �(�xk � x) sin cos�+ (�yk � y) cos cos �+ h sin� (13)

ẑk = (�xk � x) sin sin�� (�yk � y) cos sin�+ h cos�; (14)

and where

�̂k = arctan

0@
q
x̂2k + ŷ2k
ẑk

1A (15)

�̂k = arctan

 
ŷk
x̂k

!
(16)
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and, for completeness, the de�nition of � is repeated:

�(�; �) =

(
4 cos2(3�) � � �

6
rad = 30�

4 cos2(3�) sin2(2�) � > �
6
rad = 30�

(17)

Note that we could have allowed the radar sites to have di�erent altitudes by changing
the term h that appears in r, without any increase in complexity. Also, we could replace
our \radiating" radar signature model with a re
ecting radar signature model by modifying
the de�nition of s. The \re
ecting" s would depend on the same variables. However, its
complexity in this case would be appreciably more complex.

4.3 Solutions

There are a number of ways to compute an optimal control u�(t) that minimizes (9) subject
to (5)-(8). (Throughout this report, we use the � to denote an optimal value of a particular
variable.) We adopt the variational approach, which gives rise to a two-point boundary value
problem, which must be solved numerically. We refer the reader to any one of a number of
excellent textbooks on the subject of optimal control, e.g. [3, 2, 1].

We begin by forming the Hamiltonian function

H(x; u;p) = l(x; u) + pTf(x; u) (18)

= 1 +Q
NX
k=1

s(x1; x2; x3; u; �xk; �yk)

r(x1; x2; �x1; �x2)
+
R1

2
u2 +

R2

2
(u� arctanu)2

+ p1 cos x3 + p2 sin x3 +
1

9
p3 arctanu; (19)

where x = [x1 x2 x3]
T = [x y  ]T is the state, p = [p1 p2 p3]

T is de�ned as the costate, and
f and l are de�ned in (5)-(8) and (9), respectively. Computing _x = @H

@p and _p = � @H
@x , we

get the set of di�erential six equations

_x1 = cos x3 (20)

_x2 = sin x3 (21)

_x3 =
1

9
arctanu� (22)

(23)

_p1 = �Q
NX
k=1

 
@r

@x1
(x1; x2; �xk; �yk) � s(x1; x2; x3; u; �xk; �yk) (24)

�
@s

@x1
(x1; x2; x3; u; �xk; �yk) � r(x1; x2; �xk; �yk)

!
=r2(x1; x2; �xk; �yk) (25)

_p2 = �Q
NX
k=1

 
@r

@x2
(x1; x2; �xk; �yk) � s(x1; x2; x3; u; �xk; �yk) (26)

�
@s

@x2
(x1; x2; x3; u; �xk; �yk) � r(x1; x2; �xk; �yk)

!
=r2(x1; x2; �xk; �yk) (27)

_p3 = p1 sin x3 � p2 cos x3 �Q
NX
k=1

@s

@x3
(x1; x2; x3; u; �xk; �yk)=r(x1; x2; �xk; �yk); (28)
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which are subject to the split boundary conditions x(t0) = x0 and x(tf) = xf , and where
the optimal control must satisfy

H(x�; u�;p�) � H(x�; u;p�); (29)

for any u 2 R, according to Pontrygin's minimum principle. These equations are necessary
conditions for a control u�(t) and a state trajectory x�(t) to be optimal. The idea is to solve
this two point boundary value problem for a candidate optimal trajectory x�(t), and then
check to see if it is indeed a minimum of J .

There are two cases to be examined here: �xed and free �nal time tf . When the �nal
time tf is �xed (known a priori), then the three initial conditions and three �nal conditions
provide all the necessary boundary conditions (although they are of course split). When the
�nal time tf is free, i.e., unknown a priori, then we require one more equation. This comes
from the fact that the Hamiltonian must remain zero along an optimal trajectory, since it is
is not an explicit function of time. Thus, for the free �nal time case, we use the six boundary
conditions in addition to the condition

H(x�(tf); u
�(tf);p

�(tf )) = 0 (30)

to compute tf .
Equations (20)-(28) must be integrated numerically, and there are several methods to

accomplish this, including so-called shooting methods, quasilinearization, and �nite di�er-
ences. We do not provide a general method of solution here. However, to gain some insight
as to which method might work best, it is interesting to examine several special cases. We
�rst consider the case when Q = 0.

4.3.1 Case 1: Q = 0, R1 > 0, R2 � 0.

In this case, there is no penalty on proximity to radar sites since the second term in (9)
vanishes. The control appears in only the last two terms, which are positive de�nite. Thus,
(29) can be solved for a global minimum. Computing the derivative of H with respect to u
and setting it equal to zero gives

R1u+R2(u� arctanu) �
�
1�

1

1 + u2

�
+
p3
9

1

1 + u2
= 0: (31)

which must be satis�ed by an optimal u�.
Lemma 1. Equation (31) has a unique solution u� if R1 >, R2 � 0.
Proof. Multiply (31) through by (1 + u2) and de�ne g1(u) = (1 + u2)u and g2(u) =
(u� arctan u)u2. Then (31) is

R1g1(u) +R2g2(u) = �
p3
9
: (32)

The function g2(u) : R ! R is 1:1 and onto, which can be seen by computing its derivative
with respect to u, which is strictly positive everywhere except at the origin, where it is zero.
The function g1(u) : R ! R is also 1:1 and onto, because its derivative is strictly positive

17



everywhere. Thus, the left hand side of (32) is 1:1, onto, and has a strictly positive derivative
for all u. Thus, its inverse exists for any value of p3 on the right-hand side. 2

Because Q = 0, the Euler-Lagrange equations simplify to

_x1 = cos x3 (33)

_x2 = sin x3 (34)

_x3 =
1

9
arctanu� (35)

(36)

_p1 = 0 (37)

_p2 = 0 (38)

_p3 = p1 sin x3 � p2 cos x3; (39)

so p1 and p2 are constants. In this case, we can solve (39) by integration, giving

p3(t) = p1x2(t)� p2x1(t) (40)

which can be veri�ed by di�erentiating with respect to time and substituting (33) and (34).
Thus, to compute the optimal control u�, we need only determine the optimal constants p�1
and p�2, then compute p�3(t) using (40), and �nally compute u� using (32). These constants
can be found from the boundary conditions and the fact that H = 0 8 t 2 [t0; tf ], as follows.
At time t0, we know the full state x0, and can compute u�(p�1; p

�

2) for any value of p�1 and
p�2. Substituting this expression for u� into H, and repeating the process at tf , gives the
following two expressions

H(x0; u
�(p�1; p

�

2); [p
�

1 p
�

2 p
�

1x2(t0)� p�2x1(t0)]
T| {z }

p�(t0)

) = 0 (41)

H(xf ; u
�(p�1; p

�

2); [p
�

1 p
�

2 p
�

1x2(tf)� p�2x1(tf )]
T| {z }

p�(tf )

) = 0: (42)

These can be solved numerically for the optimal values p�1 and p
�

2. Once these constants are
computed, the optimal control u� is computed by solving (32) on-line.

Although in this case the optimal trajectory will ignore the most important aspect of the
path planning problem, namely the radar sites, it will prove useful as an initial condition to
a more general solution. The idea is to solve a sequence of optimal control problems, de�ned
by an increasing sequence of values of Q. The optimal solution in the case Q = 0 case should
be close to the optimal solution when Q is small, and so whatever general numerical method
is used for small Q > 0 should be initialized using the Q = 0 solution. The idea of solving a
sequence of problems in this manner, parameterized by the sequence of values of Q, is called
homotopy in the literature.

4.3.2 Case 2: Q � 0, s = 1, R1 >, R2 � 0.

For this case, we consider the radar signature function to be 1, so that the aircraft radiates
radar energy uniformly in all directions. In this case, the Hamiltonian is

H(x; u;p) = 1 +Q
NX
k=1

1

r(x1; x2; �x1; �x2)
+
R1

2
u2 +

R2

2
(u� arctanu)2
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+ p1 cos x3 + p2 sin x3 +
1

9
p3 arctan u; (43)

which is a considerable simpli�cation over the general case (18) because, in general, s depends
on u. Thus, the Euler-Lagrange equations also simplify to

_x1 = cos x3

_x2 = sinx3

_x3 =
1

9
arctan u�

_p1 =
NX
k=1

4(x1 � �xk)

((x1 � �xk)2 + (x2 � �yk)2)3

_p2 =
NX
k=1

4(x2 � �yk)

((x1 � �xk)2 + (x2 � �yk)2)3

_p3 = p1 sinx3 � p2 cos x3;

while the expression for the optimal control u� remains the same as in Case 1,

R1u
� +R2(u

� � arctan u�) �
�
1�

1

1 + u�2

�
+
p3
9

1

1 + u�2
= 0:

Unfortunately in this case, the costate equations can not be solved analytically, and a numer-
ical method will have to be brought to bear. However, the solution for the optimal control
u� is global, as in Case 1.

4.4 Case 3: The General Case.

Although we have not provided a complete solution to the two-point boundary value problem
(20)-(28) in the most general case, we can propose some ideas that take advantage of the
solutions provided thus far. The primary di�culty in solving the general case numerically is
that the signature function s is a non-convex function of the control u. Thus, the equation
@H
@u

= 0 used to compute the optimal control U� as a function of state and costate will not
yield a global minimum. This is not di�cult to see. There is a 1:1 relationship between the
control u and the roll angle �. At any given �xed state (x; y;  ), the value of s will have
several minimum with respect to the variable � for a �xed radar location. This can be seen
by looking at Figure 2, imagining that x; y;  are �xed, � is varied, and the reader is located
at one of the �xed radar sites. This fact will considerably complicate any numerical solution.

We conjecture that the following procedure can be used to compute numerically the
optimal solution in the general case.

Step 1 We �rst compute the optimal Voronoi solution as outlined in Section 3. This will
serve as an initial condition to the procedure. Thus, the initial trajectory consists of a
set of connected straight-line segments.

Step 2 The Voronoi straight-line segments will not satisfy the dynamics (5)-(7) near the
end points of these segments because the magnitude of the turning rate j _ j is bounded.
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Thus, we �rst compute a trajectory that does satisfy the dynamics by \rounding the
corners" on the Voronoi segments. This only requires �tting arcs of constant radius
that correspond to the maximum turning rate at the ends of each segment.

Step 3 Next, we solve a sequence of optimal control problems for increasing values of Q,
starting with a small value of Q and ending with the actual value of Q in the problem
statement. Each of these problems will involve the numerical solution to a two-point
boundary value problem. At each step, we use the �nal solution to the previous problem
as the initial condition. For example, if �nite elements are used, then the two-point
boundary value problem reduces to the solution of a set of nonlinear equations. If Q
is increased in small steps, then we can expect the solution of these equations at each
step to be close to the solution at the previous step.
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Figure 9: The chain-of-masses being acted on by both the spring restoring forces and the
virtual forces pushing from each radar site.

5 Solution using Virtual Forces

The �nal method that we will examine in this report is a solution \by analogy," using virtual
potential �elds and forces. In this method, a UAV path is represented by a chain of point
masses connected to one another by springs and dampers, as shown in Figure 9. One end of
the chain is attached to the UAV location, while the other is attached to the target location.
The chain length is parameterized by time, with t0 denoting the present UAV location, and tf
being the �nal location. Just as with the optimal control solution, we assume that the UAV

ies at a constant velocity, which we normalize to one without loss of generality. Again, this
assumption is made only for planning purposes: The actual speed may be adjusted along the
path in order to meet other requirements, e.g. rendezvous with other aircraft. The constant
speed assumption simpli�es the planning problem because the path length is just tf � t0.
Further, we do not assume tf is known a priori. It may be either �xed or free.

Now, if this system of springs, dampers and masses is initialized at any initial con�gu-
ration, it will evolve in time according to the governing physics, and eventually converge to
its potential energy minimum. Of course, this is a straight line of masses at zero velocity:
The dampers remove all of the kinetic energy . If there were no enemy radar sites nearby,
then this would be an optimal 
ight path between the UAV location and its target.

The key idea here is to force the chain of masses away from radar sites by using a virtual
force �eld. To do so, assume that each radar site establishes a repulsive force �eld which acts
to push away each mass according to an inverse-to-the-fourth law (1=distance4). Again, if
the chain is initialized in any con�guration, it will eventually converge to its potential energy
minimum, which is a weighted sum of its path length and the average distance from the radar
sites, with zero velocity. Once it has converged, the path is de�ned as the sequence of way
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Figure 10: The chain-of-masses idea, showing the two spring forces (F 1 and �F 2 and one
virtual \radar" force ( �F 21) acting on mass j = 2.

points de�ned by the steady-state mass locations, connected by straight line segments. The
idea is illustrated in Figure 9.

We �rst derive the equations of motion for the uniform-radar-signature case. Referring to
Figure 10, assume that we have M +2 masses, indexed by j (0 � j �M +1), where the �rst
mass (j = 0) is located at the UAV location and the last mass (j = N + 1) is located at the
target location. Let mj denote the mass of mass j. Let (xj; yj) denote the (x; y)-coordinate
of mass j, so (x0; y0) is the UAV Cartesian coordinate at time t0, and (xM ; yM) is the target
Cartesian coordinate, i.e., the desired UAV location at time tf . Assume the springs between
the masses are linear with a spring constant of �, and let the dampers between each of the
masses have a damping constant of b.

With this notation, the distance between each of the M + 2 masses is

dj =
q
(xj � xj�1)2 + (yj � yj�1)2 for (1 � j �M + 1): (44)

Denote the normal vector pointing from mass j to mass j � 1 as nj, so that

nj =

"
(xj�1 � xj)=dj
(yj�1 � yj)=dj

#
for (1 � j �M + 1):

Then the two spring restoring forces that act on mass j (1 � j � M) are given by Hooke's
law:

F j = �djnj

F j+1 = ��dj+1nj+1:

The two linear viscous damping forces that act on mass j, which we denote with a b , are
similarly expressed as

cF j = b �

 "
_xj
_yj

#
� nj �

"
_xj�1
_yj�1

#
�nj

!
� nj
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cF j+1 = b �

 "
_xj+1
_yj+1

#
�nj+1 �

"
_xj
_yj

#
� nj+1

!
� nj+1;

where the � denotes the dot product.
Finally, the \virtual force" acting on mass j (1 � j �M) from radar site k (1 � k � N)

is de�ned to obey an \inverse-squared-squared law." Recall that each of the N radar sites
are located at (�xk; �yk), so the distance from mass j to radar site k is

�djk =
q
(xj � �xk)2 + (yj � �yk)2 + h2

where h is the height of the UAV, assumed to be constant. If we denote the normal vector
pointing from radar site k to mass j as

�njk =

"
(xj � �xk)= �djk
(yj � �yk)= �djk

#
;

then we de�ne the virtual force acting on mass j from radar k as

�F jk =
Q
�d4jk

�njk

where Q is a constant design parameter that represents the trade-o� between stealth and path
length. With this, the equations of motion for each mass expressed in Cartesian coordinates
is just given by Newton's law:

mj

"
�xj
�yj

#
= F j + F j+1 +cF j +cF j+1 +

NX
k=1

�F jk;

which, expressed in Cartesian coordinates is

mj�xj = �(xj�1 � xj)� �(xj+1 � xj)| {z }
spring forces

+ b( _xj�1 � xj)� b( _xj+1 � xj)| {z }
damping forces

+
NX
k=1

Q

((xj � �xk)2 + (yj � �yk)2 + h2)5=2| {z }
virtual forces

(45)

mj �yj = �(yj�1 � yj)� �(yj+1 � yj)| {z }
spring forces

+ b( _yj�1 � yj)� b( _yj+1 � yj)| {z }
damping forces

+
NX
k=1

Q

((yj � �yk)2 + (yj � �yk)2 + h2)5=2| {z }
virtual forces

(46)

for 1 � j � M . Note that the equations of motion for masses j = 0 and j = M + 1 are not
expressed here because they are assumed to be �xed in space.

Now, to �nd a path, we �rst triangulate the region using the graph theory approaches
outlined in Section 3. This produces a sequence of straight-line paths, which we use to
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Figure 11: The chain-of-masses idea. At the top, the 10 masses (M = 11) are initialized
along a straight line, which might be a segment from the Delaunay triangulation. The system
of equations (45)-(46) is simulated and allowed to reach equilibrium, shown at bottom. For
this simulation, the damping b = 1, the spring constant � = 1, the masses mj = 1, and the
simulation time is 20s. (This should not be confused with the initial and �nal times t0 and
tf .) The radar weight Q = 50, and the height h = 1.

initialize the virtual force approach. This is done by placing the M masses uniformly along
these straight-lines, and then simulating the equations of motion (45)-(46) until the solution
reaches equilibrium. The parameter Q is set to trade-o� stealth versus path-length. If
Q = 0, then no penalty is placed on stealth, the nonlinear terms in (45)-(46) vanish, and
the masses will converge to the global straight-line equilibrium that minimizes the potential
energy in the springs. For large Q, however, the masses will be pushed away from the radar
sites, bending around them, reaching a local equilibrium that represents a trade-o� between
minimal path length and average distance from the radars. The result of a typical Matlab
simulation is illustrated in Figure 11.

Several remarks are in order. First, note that the right-hand sides of (45)-(46), although
nonlinear, are globally Lipschitz. This means that the solution to the di�erential equations
will exist for all time. Moreover, note that the virtual force never larger than 1=h4, i.e., it
\saturates" for large distances �djk. This means that the linear spring terms will dominate at
large distances from the radars, as intuition would suggest: The path should not be a�ected
if a radar site is very far away. From a numerical simulation point-of-view, the nonlinearity
is \soft" (not severe), which makes for easy simulation of (45)-(46). This is important from
the real-time implementation point-of-view.
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Figure 12: Assigning an orientation  j to mass mj using the approximate derivative, to
incorporate the e�ects of a non-uniform radar signature.

5.1 Non-Convex Radar Signatures

Equations (45)-(46) must be modi�ed to incorporate the e�ect of a non-uniform radar sig-
nature. For this, each mass mj must be assigned an orientation in space, because the radar
signature is a function of both yaw  and roll �. The yaw (azimuth) orientation angle  j
can be de�ned in a discrete way for mass j by computing the angle between the x-axis and
the straight line that passes through mass j � 1 and j + 1:

 j = arctan(yj+1 � yj�1; xj+1 � xj�1);

where we have used the four-quadrant version of the inverse tangent function (atan2 in
Matlab). This is essentially the discrete approximation of the derivative of a curve, as shown
in Figure 12. Once  j is computed for each mass as a function of the states xj and yj, we can
compute the roll angle �j using the kinematic (algebraic) model (5)-(8). Then the signature
function s(xj; yj;  j; uj; �xk; �uk), given in (11) and (8) can be evaluated, and the numerator
terms in (45)-(46) can be replaced by Q � s(xj; yj;  j; uj; �xk; �uk).

What this modi�cation does is make the virtual force stronger when a radar lobe is
pointing toward a radar station. But, the virtual force is still bounded by Qmax s=h2

because s is a globally bounded function of its arguments. Thus, solutions to (45)-(46) still
exist for all time, and the modi�ed mechanical system will again converge to a potential
energy minimum. Since the virtual force is large when a lobe is pointed to a radar station,
the system should converge such that the lobes point away from the stations, because the
potential energy is less here. However, because the system is nonlinear, convergence will be
to a local potential energy minimum; a unique global solution can not be expected to exist.

Several simulations of the non-convex case have been conducted, and Matlab simulation
scripts have been included with this report for both the uniform and non-convex cases. The
�nal \picture" for the non-convex case is similar to Figure 11.
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5.2 Comparison to Optimal Control

How does the optimal control approach compare with the virtual force approach? In several
aspects they are similar. This is because the virtual force method is a simulation of a
Lagrangian mechanical system. In fact, the potential energy in the springs, which is given
by

NX
k=1

�di

is just � times the path length, tf � t0. (Of course, this is the path length de�ned as the
sum of the length of the straight-line segments joining the masses.) When Q = 0, this is the
only potential energy in the system, and it is minimized, giving the straight-line solution.
When Q � 0, some potential energy is \stored" in the potential �eld generated by the radar
stations. Thus, what is minimized is a weighted sum of path length (energy stored in the
springs) and distance from the radars. This is a discrete-space (lumped) version of what is
being solved by the optimal control problem.

However, there are some di�erences between the two approaches. As shown in Section
4, the solution to the optimal control problem requires the solution to a nonlinear, non-
convex two-point boundary value problem. At best, convergence to local a minimum can be
expected. Numerically, the general solution can be very di�cult to �nd. On the other hand,
the virtual force approach involves computing the solution to a set of nonlinear but stable
initial value problems. A relatively simple set of nonlinear ordinary di�erential equations
must be simulated. Moreover, because they are globally Lipschitz and stable, the simulation
is relatively straight-forward | a �xed step size can be used, for example. We can therefore
expect fast convergence from any initial condition (the Delaunay triangulation, for example)
to a �nal condition, although computing theoretical bounds on the amount of computation
required will probably yield very conservative results. Note that the convergence will not be
global, because the potential energy function, de�ned in terms of the mass positions, can be
expected to possess many local minimum, especially in the non-convex radar case. But, the
virtual force method is clearly superior from a computational point of view.

6 Conclusions & Recommendations

A UAV path planning algorithm should provide stealthy, minimal length paths that satisfy
the dynamic constraints of the airframe. The algorithm should also be able to run on an
airborne processor as a part of a larger hybrid \cooperative control" scheme. In this report,
we have investigated three di�erent designs: Graphs, Optimal Control, and Virtual Potential
Fields. Of course, this report is by no means �nal. In fact, it is more of a proposal: There
is much work to be done.

There are challenges in implementing a graph based approach. Recall that this approach
discretizes the problem at the start. If stealth is the most important characteristic, then
this graph must discretize the orientation degrees of freedom with su�cient �delity at the
start. For example, if there are �ve lobes, as in Figure 2, then a graph with only eight
(P = 8) orientations at each location in space is probably insu�cient: Only eight samples
of the function �( ; �) as a function of  for a �xed value of � is not enough to reconstruct

26



�. In general, a radar signature with many lobes will require a large number of orientation
angles at each point in space. When we add the third dimension (height) to the problem,
it is not di�cult to see that the number of vertices will become very large. But searching
a graph with a large number of vertices becomes very memory and time consuming. This
is the key challenge to this approach. Heuristic but e�cient methods of searching will have
to be applied, and the non-global nature of these approaches will have to be investigated.
A bound on the computational complexity, in terms of time and memory requirements, will
have to be developed in order to compare this with the other approaches.

If the optimal control solution is to be pursued, then the key challenge is to develop an
e�cient way to solve the resulting two-point boundary value problem. Using a graph-based
method such as the Voronoi polygon as an initial condition to a �nite-element method of
solution, in combination with the homotopy ideas suggested in this report, are promising
approaches. Shooting methods [8] may work well because the right-hand side of the UAV
kinematic model (5)-(7) is bounded. (Shooting methods do not work well for unstable
dynamical systems.) How does this compare to the graph approach? The optimal control
method discretizes the problem at a later stage, when solving the continuous-state and
continuous-time two-point boundary value problem. An important question to answer is
how the two methods compare in terms of computational complexity. A major advantage
of a graphical approach is the existence of complexity bounds, although these will be overly
conservative if a heuristic search method is adopted. If the optimal control problem is reduced
to the solution of a nonlinear programming problem, as it is in a �nite-di�erence method
of numerical solution, then establishing bounds on computation time should be possible. It
would be interesting to compare these to a graph based method.

The potential �elds approach is probably the most promising of the three. It has clear
advantages: The di�erential equations are not only stable but are initial value problems,
so mature numerical methods of solution can be applied. For a uniform radar signature,
the method works very well. However, in the non-uniform case, the approach requires some
more work. In this report, roll and yaw were algebraically coupled, but this does not yield
satisfactory results. This can be understood by visualizing one of the masses at a point in
space, with its lobe pointing toward a radar site. (See Figure 2.) This will result in a large
force pushing the mass directly away from the radar site. But, the UAV could also reduce
its exposure by rolling. So, if the mass were not only pushed away from the radar site, but
also twisted in a direction that reduces s, the path would become more stealthy. This does
not happen with the proposed model as it presently stands. However, if the potential �eld
resulted not only in translational forces but also moments, and if roll were coupled to yaw
dynamically, using a torsional spring/damper for example (and not algebraically as is done
in this study), then better results should be obtained. In short, the masses need some extra
degrees of freedom, and the potential �eld needs a \twisting" component.

Basically, the masses should be coupled by springs and dampers such that their con�g-
uration space can be interpreted as a set of way-points that the UAV can 
y. Thus, the
algorithm will always produce a 
ight path that falls within UAV 
ight envelope. Then the
virtual potential �eld needs to be rede�ned to include a twisting component which will push
the rolling degree of freedom toward a reduced potential, which is interpreted as a more
stealthy way-point. To do this, the function s will have to be re-de�ned. Of course, these
modi�cations will increase the number of degrees of freedom substantially, slowing down the
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simulation. But very large numbers of ODEs can be simulated quickly using today's DSPs,
so a large number of ODEs should not rule out this method at this point in the development
cycle. Once more accurate potential �eld and \mass-spring-damper model" are de�ned, then
computational complexity can be compared with the optimal control and graphical methods.

There are several other improvements and directions that can be pursued with respect
to the virtual potential �eld approach. These are listed here.

� Damping. As it stands, damping is only provided along the direction of the line
connecting one mass to its two neighbors. Thus, transverse modes that develop in the
chain during simulation are not well-damped. This increases the time required to reach
stable equilibrium. By adding damping in the transverse direction, the solution should
converge faster. Notice that the additional damping does not change the potential
energy in the system, so will not change the set of stable con�gurations. However, be-
cause we can expect the system to converge to a local stable equilibrium con�guration,
the additional damping might change which �nal equilibrium con�guration is achieved.

� Stretching. When the chain of masses is nearby a set of radar sites, the virtual
force pulls the masses away from each other, stretching out the chain. Conversely, in
areas that are devoid of radar stations, the masses tend to draw close together. This
a�ect, apparent in Figure 11, is undesirable because the masses are then interpreted
as way points. It would be more desirable to have a higher density of way points near
the radar sites, since one would expect the path to turn more often in these areas.
So, it would seem that the approach provides its lowest resolution data in the areas
where we require high resolution. We might modify the approach by using nonlinear
springs, which become more sti� as the chain is pulled apart. This would minimize the
stretching near radar sites. Of course, the di�erential equations remain stable but lose
their global Lipschitz property. However, the non-Lipschitz nonlinearity is stabilizing,
so should not a�ect the numerical solution an an overly adverse way.

� Numerical Solution. The ODSs have well-de�ned structure, and the method of nu-
merical solution (e.g. Euler, Runge Kutta, etc.), should be chosen and tuned properly.
If the improved damping is de�ned properly, it may be possible to de�ne a change of co-
ordinates in which the system is linear or almost linear. Simulation in these coordinates
might be easier. It is important to establish bounds on the amount of computation
required so the method can be compared with other competing approaches.
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